Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ustilago maydis secreted T2 ribonucleases, Nuc1 and Nuc2 scavenge extracellular RNA.

Identifieur interne : 000008 ( Main/Exploration ); précédent : 000007; suivant : 000009

Ustilago maydis secreted T2 ribonucleases, Nuc1 and Nuc2 scavenge extracellular RNA.

Auteurs : Dibya Mukherjee [Inde] ; Sayandeep Gupta [Inde] ; Abhrajyoti Ghosh [Inde] ; Anupama Ghosh [Inde]

Source :

RBID : pubmed:32844528

Abstract

Ustilago maydis genome codes for many secreted ribonucleases. The contribution of two among these belonging to the T2 family (Nuc1 and Nuc2) in the pathogen virulence, has been assessed in this study. The nuc1 and nuc2 deletion mutants showed not only reduced pathogenicity compared to the SG200 WT strain but also exhibited significant delay in the completion of the pathogenic lifecycle. Both the proteins were also tested for their nucleolytic activities towards RNA substrates from maize and yeast. This also yielded valuable insights into the ability of the ribonucleases to utilise extracellular RNA as a nutrient source. Our study therefore established a role of two T2 type secreted ribonucleases of a phytopathogen in the acquisition of nutrient for the first time. This study also provides evidence that maize apoplast contains RNA, which can be utilised as a substrate by both Nuc1 and Nuc2.

DOI: 10.1111/cmi.13256
PubMed: 32844528


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ustilago maydis secreted T2 ribonucleases, Nuc1 and Nuc2 scavenge extracellular RNA.</title>
<author>
<name sortKey="Mukherjee, Dibya" sort="Mukherjee, Dibya" uniqKey="Mukherjee D" first="Dibya" last="Mukherjee">Dibya Mukherjee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Biology, Bose Institute Centenary Campus, Kolkata, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Division of Plant Biology, Bose Institute Centenary Campus, Kolkata</wicri:regionArea>
<wicri:noRegion>Kolkata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gupta, Sayandeep" sort="Gupta, Sayandeep" uniqKey="Gupta S" first="Sayandeep" last="Gupta">Sayandeep Gupta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biochemistry, Bose Institute Centenary Campus, Kolkata</wicri:regionArea>
<wicri:noRegion>Kolkata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Abhrajyoti" sort="Ghosh, Abhrajyoti" uniqKey="Ghosh A" first="Abhrajyoti" last="Ghosh">Abhrajyoti Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biochemistry, Bose Institute Centenary Campus, Kolkata</wicri:regionArea>
<wicri:noRegion>Kolkata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Anupama" sort="Ghosh, Anupama" uniqKey="Ghosh A" first="Anupama" last="Ghosh">Anupama Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Biology, Bose Institute Centenary Campus, Kolkata, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Division of Plant Biology, Bose Institute Centenary Campus, Kolkata</wicri:regionArea>
<wicri:noRegion>Kolkata</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32844528</idno>
<idno type="pmid">32844528</idno>
<idno type="doi">10.1111/cmi.13256</idno>
<idno type="wicri:Area/Main/Corpus">000129</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000129</idno>
<idno type="wicri:Area/Main/Curation">000129</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000129</idno>
<idno type="wicri:Area/Main/Exploration">000129</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ustilago maydis secreted T2 ribonucleases, Nuc1 and Nuc2 scavenge extracellular RNA.</title>
<author>
<name sortKey="Mukherjee, Dibya" sort="Mukherjee, Dibya" uniqKey="Mukherjee D" first="Dibya" last="Mukherjee">Dibya Mukherjee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Biology, Bose Institute Centenary Campus, Kolkata, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Division of Plant Biology, Bose Institute Centenary Campus, Kolkata</wicri:regionArea>
<wicri:noRegion>Kolkata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gupta, Sayandeep" sort="Gupta, Sayandeep" uniqKey="Gupta S" first="Sayandeep" last="Gupta">Sayandeep Gupta</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biochemistry, Bose Institute Centenary Campus, Kolkata</wicri:regionArea>
<wicri:noRegion>Kolkata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Abhrajyoti" sort="Ghosh, Abhrajyoti" uniqKey="Ghosh A" first="Abhrajyoti" last="Ghosh">Abhrajyoti Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biochemistry, Bose Institute Centenary Campus, Kolkata</wicri:regionArea>
<wicri:noRegion>Kolkata</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Anupama" sort="Ghosh, Anupama" uniqKey="Ghosh A" first="Anupama" last="Ghosh">Anupama Ghosh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Biology, Bose Institute Centenary Campus, Kolkata, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Division of Plant Biology, Bose Institute Centenary Campus, Kolkata</wicri:regionArea>
<wicri:noRegion>Kolkata</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cellular microbiology</title>
<idno type="eISSN">1462-5822</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ustilago maydis genome codes for many secreted ribonucleases. The contribution of two among these belonging to the T2 family (Nuc1 and Nuc2) in the pathogen virulence, has been assessed in this study. The nuc1 and nuc2 deletion mutants showed not only reduced pathogenicity compared to the SG200 WT strain but also exhibited significant delay in the completion of the pathogenic lifecycle. Both the proteins were also tested for their nucleolytic activities towards RNA substrates from maize and yeast. This also yielded valuable insights into the ability of the ribonucleases to utilise extracellular RNA as a nutrient source. Our study therefore established a role of two T2 type secreted ribonucleases of a phytopathogen in the acquisition of nutrient for the first time. This study also provides evidence that maize apoplast contains RNA, which can be utilised as a substrate by both Nuc1 and Nuc2.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32844528</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1462-5822</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2020</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Cellular microbiology</Title>
<ISOAbbreviation>Cell Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Ustilago maydis secreted T2 ribonucleases, Nuc1 and Nuc2 scavenge extracellular RNA.</ArticleTitle>
<Pagination>
<MedlinePgn>e13256</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/cmi.13256</ELocationID>
<Abstract>
<AbstractText>Ustilago maydis genome codes for many secreted ribonucleases. The contribution of two among these belonging to the T2 family (Nuc1 and Nuc2) in the pathogen virulence, has been assessed in this study. The nuc1 and nuc2 deletion mutants showed not only reduced pathogenicity compared to the SG200 WT strain but also exhibited significant delay in the completion of the pathogenic lifecycle. Both the proteins were also tested for their nucleolytic activities towards RNA substrates from maize and yeast. This also yielded valuable insights into the ability of the ribonucleases to utilise extracellular RNA as a nutrient source. Our study therefore established a role of two T2 type secreted ribonucleases of a phytopathogen in the acquisition of nutrient for the first time. This study also provides evidence that maize apoplast contains RNA, which can be utilised as a substrate by both Nuc1 and Nuc2.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mukherjee</LastName>
<ForeName>Dibya</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0910-1161</Identifier>
<AffiliationInfo>
<Affiliation>Division of Plant Biology, Bose Institute Centenary Campus, Kolkata, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gupta</LastName>
<ForeName>Sayandeep</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-8079-7712</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghosh</LastName>
<ForeName>Abhrajyoti</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2469-3740</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghosh</LastName>
<ForeName>Anupama</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4200-5091</Identifier>
<AffiliationInfo>
<Affiliation>Division of Plant Biology, Bose Institute Centenary Campus, Kolkata, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>IFA13-LSPA16 (DST-INSPIRE Faculty Scheme)</GrantID>
<Agency>Department of Science and Technology, Ministry of Science and Technology, India</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cell Microbiol</MedlineTA>
<NlmUniqueID>100883691</NlmUniqueID>
<ISSNLinking>1462-5814</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">T2 ribonucleases</Keyword>
<Keyword MajorTopicYN="N">Ustilago maydis</Keyword>
<Keyword MajorTopicYN="N">Zea mays</Keyword>
<Keyword MajorTopicYN="N">effector proteins</Keyword>
<Keyword MajorTopicYN="N">extracellular RNA</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32844528</ArticleId>
<ArticleId IdType="doi">10.1111/cmi.13256</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Abel, S., Nurnberger, T., Ahnert, V., Krauss, G. J., & Glund, K. (2000). Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiology, 122(2), 543-552. https://doi.org/10.1104/pp.122.2.543</Citation>
</Reference>
<Reference>
<Citation>Bariola, P. A., Howard, C. J., Taylor, C. B., Verburg, M. T., Jaglan, V. D., & Green, P. J. (1994). The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. The Plant Journal, 6(5), 673-685. https://doi.org/10.1046/j.1365-313x.1994.6050673.x</Citation>
</Reference>
<Reference>
<Citation>Brachmann, A., Konig, J., Julius, C., & Feldbrugge, M. (2004). A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Molecular Genetics and Genomics, 272(2), 216-226. https://doi.org/10.1007/s00438-004-1047-z</Citation>
</Reference>
<Reference>
<Citation>Brown, N. A., Antoniw, J., & Hammond-Kosack, K. E. (2012). The predicted secretome of the plant pathogenic fungus Fusarium graminearum: A refined comparative analysis. PLoS One, 7(4), e33731. https://doi.org/10.1371/journal.pone.0033731</Citation>
</Reference>
<Reference>
<Citation>Deshpande, R. A., & Shankar, V. (2002). Ribonucleases from T2 family. Critical Reviews in Microbiology, 28(2), 79-122. https://doi.org/10.1080/1040-840291046704</Citation>
</Reference>
<Reference>
<Citation>Divon, H. H., & Fluhr, R. (2007). Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiology Letters, 266(1), 65-74. https://doi.org/10.1111/j.1574-6968.2006.00504.x</Citation>
</Reference>
<Reference>
<Citation>Espino, J. J., Gutierrez-Sanchez, G., Brito, N., Shah, P., Orlando, R., & Gonzalez, C. (2010). The Botrytis cinerea early secretome. Proteomics, 10(16), 3020-3034. https://doi.org/10.1002/pmic.201000037</Citation>
</Reference>
<Reference>
<Citation>Gupta, S., Roy, M., & Ghosh, A. (2017). The archaeal signal recognition particle: Present understanding and future perspective. Current Microbiology, 74(2), 284-297. https://doi.org/10.1007/s00284-016-1167-9</Citation>
</Reference>
<Reference>
<Citation>Hillwig, M. S., Contento, A. L., Meyer, A., Ebany, D., Bassham, D. C., & Macintosh, G. C. (2011). RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants. Proceedings of the National Academy of Sciences of the United States of America, 108(3), 1093-1098. https://doi.org/10.1073/pnas.1009809108</Citation>
</Reference>
<Reference>
<Citation>Holliday, R. (1974). Ustilago maydis. In R. C. King (Ed.), Handbook of genetics. New York, NY: Plenum Press.</Citation>
</Reference>
<Reference>
<Citation>Irie, M. (1999). Structure-function relationships of acid ribonucleases: Lysosomal, vacuolar, and periplasmic enzymes. Pharmacology & Therapeutics, 81(2), 77-89. https://doi.org/10.1016/s0163-7258(98)00035-7</Citation>
</Reference>
<Reference>
<Citation>Kamper, J. (2004). A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Molecular Genetics and Genomics, 271(1), 103-110. https://doi.org/10.1007/s00438-003-0962-8</Citation>
</Reference>
<Reference>
<Citation>Kamper, J., Kahmann, R., Bolker, M., Ma, L. J., Brefort, T., Saville, B. J., … Birren, B. W. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 444(7115), 97-101. https://doi.org/10.1038/nature05248</Citation>
</Reference>
<Reference>
<Citation>Kettles, G. J., Bayon, C., Sparks, C. A., Canning, G., Kanyuka, K., & Rudd, J. J. (2018). Characterization of an antimicrobial and phytotoxic ribonuclease secreted by the fungal wheat pathogen Zymoseptoria tritici. The New Phytologist, 217(1), 320-331. https://doi.org/10.1111/nph.14786</Citation>
</Reference>
<Reference>
<Citation>Kock, M., Stenzel, I., & Zimmer, A. (2006). Tissue-specific expression of tomato ribonuclease LX during phosphate starvation-induced root growth. Journal of Experimental Botany, 57(14), 3717-3726. https://doi.org/10.1093/jxb/erl124</Citation>
</Reference>
<Reference>
<Citation>Luhtala, N., & Parker, R. (2010). T2 family ribonucleases: Ancient enzymes with diverse roles. Trends in Biochemical Sciences, 35(5), 253-259. https://doi.org/10.1016/j.tibs.2010.02.002</Citation>
</Reference>
<Reference>
<Citation>Mendoza-Mendoza, A., Berndt, P., Djamei, A., Weise, C., Linne, U., Marahiel, M., … Kahmann, R. (2009). Physical-chemical plant-derived signals induce differentiation in Ustilago maydis. Molecular Microbiology, 71(4), 895-911. https://doi.org/10.1111/j.1365-2958.2008.06567.x</Citation>
</Reference>
<Reference>
<Citation>Mukherjee, D., Gupta, S., Saran, N., Datta, R., & Ghosh, A. (2017). Induction of apoptosis-like cell death and clearance of stress-induced intracellular protein aggregates: Dual roles for Ustilago maydis metacaspase Mca1. Molecular Microbiology, 106(5), 815-831. https://doi.org/10.1111/mmi.13848</Citation>
</Reference>
<Reference>
<Citation>Nurnberger, T., Abel, S., Jost, W., & Glund, K. (1990). Induction of an extracellular ribonuclease in cultured tomato cells upon phosphate starvation. Plant Physiology, 92(4), 970-976. https://doi.org/10.1104/pp.92.4.970</Citation>
</Reference>
<Reference>
<Citation>Pennington, H. G., Jones, R., Kwon, S., Bonciani, G., Thieron, H., Chandler, T., … Spanu, P. D. (2019). The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA. PLoS Pathogens, 15(3), e1007620. https://doi.org/10.1371/journal.ppat.1007620</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Mukherjee, Dibya" sort="Mukherjee, Dibya" uniqKey="Mukherjee D" first="Dibya" last="Mukherjee">Dibya Mukherjee</name>
</noRegion>
<name sortKey="Ghosh, Abhrajyoti" sort="Ghosh, Abhrajyoti" uniqKey="Ghosh A" first="Abhrajyoti" last="Ghosh">Abhrajyoti Ghosh</name>
<name sortKey="Ghosh, Anupama" sort="Ghosh, Anupama" uniqKey="Ghosh A" first="Anupama" last="Ghosh">Anupama Ghosh</name>
<name sortKey="Gupta, Sayandeep" sort="Gupta, Sayandeep" uniqKey="Gupta S" first="Sayandeep" last="Gupta">Sayandeep Gupta</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000008 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000008 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32844528
   |texte=   Ustilago maydis secreted T2 ribonucleases, Nuc1 and Nuc2 scavenge extracellular RNA.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32844528" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020